
Specifying Agent Interaction Protocols with
Standard UML

Jürgen Lind

iteratec GmbH
Inselkammerstr. 4

D-82008 Unterhaching, Germany

jli@agentlab.de

Abstract. In this paper, I will demonstrate how the Unified Modeling Language
(UML) can be used to describe agent interaction protocols. The approach that is
presented in this paper does not propose enhancements or completely new dia-
grams but instead relies on existing UML elements and the UML extension mech-
anism that is part of the standard. This conformity with the base UML is a major
advantage of the idea as it prevents a diversification of the UML into different po-
tentially incompatible dialects. The practical use of the method is demonstrated
with an example on how to specify a realistic agent interaction protocol.

1 Introduction

One of the currently most popular graphical design languages is the Unified Modeling
Language (UML) [3], [17] that aims at a global standard for the description of software
systems. Such standardized blueprint languages already exist for electrical, mechanical
or civil engineering for several years. The advantage of a blueprint language for soft-
ware systems is that it provides a set of symbols and mechanisms together with well
defined semantics that enables software designers from all over the world to express,
exchange and work on their ideas without complicated and error-prone translation pro-
cesses. Furthermore, a unified language increases the inter-operability among software
design tools and allows software developers to become more independent of particular
development environments and to assemble customized environments out of different
tool suites. The UML combines original ideas with established features of other graph-
ical design languages into a coherent framework that allows for the specification of a
broad range of design aspects of a software system.

Due to the strong focus on object-oriented software design, however, the UML is
not right away suitable for agent-based systems. In order to make it fit some special re-
quirement of agent-oriented software, there are two possible ways to be taken. One way
is to extend the UML by providing new structural elements and diagrams that enhance
the expressive power of the base language. This way is favored by the developers of
AUML [2], [1], [14] which proposes an extension of the UML with respect to agent-
oriented concepts. This approach, however, has the major drawback that it violates the
idea of the UML as a general design language. To quote from [17], p. 103: “Many
modelers wish to tailor a modeling language for a particular application domain. This



carries some risk, because the tailored language will not be universally understandable,
but people nevertheless attempt to do it.” Thus, if each group within the computer sci-
ence community added their own UML extension according to their particular needs,
the base language is likely to be split up in several increasingly unrelated dialects. The
result, as it can be observed with programming languages such as Basic, is a collec-
tion of inconsistent language fragments. Besides this not being the idea of a standard
language, it introduces the additional difficulty of having to learn a new dialect when
switching between two specialized application fields. Furthermore, tool support is usu-
ally not available for special purpose diagrams.

As a consequence from the above considerations, I suggest to take another approach
to the use of the UML for describing agent-specific aspects of a software system. A ma-
jor goal is to remain within the boundaries of the original language and to use only those
extension mechanisms that were explicitely admitted by the language designers [3].
Thus, I will not introduce completely new diagram types or the like but instead rely
on the provided structural elements and use them to model the system of agent-based
applications.

In this paper, I will demonstrate how the UML can be used to capture one of the core
concepts of multiagent systems –interaction. Interaction is the foundation for cooper-
ative or competitive behavior among several autonomous agents and thus encapsulates
the most fundamental design decisions within the development of multiagent systems.
Before interaction can take place, however, some technical and conceptual difficulties
must be solved. First of all, the agents must be able to understand each other. Mutual
understanding is achieved by relying of accepted formal or informal standards where
the de-facto standard of todays agent applications seems to be KQML [7], others can
be found in [5] or [8]. Although agent communication languages are an important as-
pect of multiagent systems design, these aspects are not covered by this investigation
of the UML as interaction description language. Instead, this paper will focus on the
second important aspect of agent interaction which is that the agents must know which
messages they can expect in a particular situation and what the are supposed to do
(e.g. sending a reply message) when a certain message arrives (or does not arrive for a
given period of time). This part of the interaction process is controlled byinteraction
protocols(or simply protocols).

For an example of an interaction protocol, consider an English auction. There, an
auctioneer offers a product at a particular price to a group of bidders. Each of the bidders
individually decides to accept that price or to decline the offer. If one of the bidders
accepts the current price, the auctioneer raises the price by a fixed rate and asks the
group of bidders again if any of them accepts the new price. If this is the case, the
price is raised again and the cycle repeats until none of the bidders is willing to pay the
current price. Then, the last bidder who accepted the price is given the product.

In this example, we can identify the major elements of interaction protocols. First,
we can separate the participating agents into different groups. In this case, we have two
groups: the auctioneer and the bidders. Each group has a set of associated incoming
and outgoing messages an internal functions that decide about their next action. I will
refer to the set of messages and behaviors that are associated with a group of agents as
a role that can be played by an agent. Please note that agents are not limited to a single



role, e.g. the auctioneer in the previous example can be a bidder in another auction
at the same time. The second important aspect of an interaction protocol besides the
participating roles is the temporal ordering of function evaluation and the messages
that are exchanged. For example, it would not make sense or would be impossible for
the bidder to decide on an offer and to decline it before it has even received the offer.
Therefore, the interaction protocol determines the flow of control within each role as
well as between different roles.

It is precisely the dualism mentioned in the previous paragraph that makes protocol
design a difficult task. There are not only intra-role aspects to consider during the design
process, but also inter-role dependencies induced by the other roles. Even worse, there
is currently only little software engineering support for the design of interaction proto-
cols. A number of protocol specification languages have been proposed ranging from
specification languages for low level communication protocols [18], [9] up to high level
specification languages for multiagent applications [4], [10]. Up to now, however, none
– perhaps except for Estelle – of these languages has gained wide-spread acceptance.
Estelle [18], is a specification language for service description and system behavior
in telecommunications that uses extended finite automata to describe the intended be-
havior. Extended finite state machines are normal finite state machines plus (typed)
variables. The state in the finite state machine has a set of associated variables that can
be queried and/or manipulated in the transition specifications. In Estelle, a protocol is
a collection of several distinct automata where each automaton can have an arbitrary
number of interaction points with other automata. These interaction points are called
channelsand they control the message exchange between different automata. Estelle is
a very powerful language that was mainly developed for the specification of low level
protocols. It is therefore not directly suitable for the use in multiagent applications.

One reason for the lack of acceptance mentioned above is probably the fact that pro-
tocol description languages usually provide only a text-based representations for the in-
teraction protocols. This makes it hard, especially for complex protocols, to understand
the flow of control within the protocol. An alternative for these text-based languages
are therefore graphical languages that make the described protocols more accessible
for the reader. As mentioned above, I argue that the UML allows the software engineer
to specify the interaction schemes that can be found within a multiagent system. In an
earlier approach described in [12], I have proposed a method to describe interaction
diagrams using a standard diagram type provided by the UML with minor modifica-
tions of the proposed standard elements. The modification that I found necessary in my
earlier work, however, have shown to be unnecessary now that I have gained greater
knowledge of the UML meta-model that allows for defining new UML elements within
well-defined bounds. Basically, this paper is a revised version of the Section in [12] that
corrects the errors that have been made there.

2 Related Work

In the previous section, I have already mentioned some protocol specification languages
that have been proposed to describe interaction protocols within agent-based systems.



One of the most recent approaches for modeling agent-specific aspects of a soft-
ware system is the AUML approach mentioned above. As part of AUML, the authors
suggest an extension of the UML by introducing a completely new diagram type called
protocol diagrams. These diagrams combine elements of UML interaction diagrams
and state diagrams to model the roles that can be played by an agent in the course of
interacting with other agents. The new diagram type allows for the specification of mul-
tiple threads within an interaction protocol and supports protocol nesting and protocol
templates based on generic protocol descriptions. In [19], an extension of this UML
extension is proposed; a comparison of the two approaches can be found in [11]. As I
have argued earlier, however, I see a major problem in this approach as it supports a
diversification within the UML community that may not be in the sense of the original
inventors.

The Protoz [15] protocol specification environment features a specification lan-
guage that is related to Estelle [18] and that is based on a similar computational con-
cept. However, due to the focus on multiagent specific aspects,Protoz provides a more
accessible interface to protocol design. The main tool of the protocol environment is a
compiler that generates Oz code [16] from a given protocol specification, a graphical
notation is currently not available. In theProtoz environment, a protocol is defined by a
collection of roles where each of these roles is specified as an extended finite state ma-
chine. The state machine transitions fire upon incoming messages; messages can stem
from other agents or from internal procedures. These internal procedures implement the
connection to the application and allow for a uniform modeling of internal and external
communication.

The ZEUS development environment [13] from BT is a a design method and tool
collection for the engineering of distributed multiagent applications. The ZEUS tools all
encompass the direct-manipulation metaphor and allow the designer to use drag-and-
drop technology to assemble the application from pre-defined components. The tool-kit
allows the designer to specify models for different types of agents, for the organiza-
tional structure of agent societies and for negotiation models. The negotiation models
are either pre-defined or the can be build by the designer if no appropriate pre-defined
model is available for a particular task. In [6] a notation for role models is presented
that originates from UML class diagram notation and that contains also elements from
UML interaction diagrams (e.g. message sequencing). The ZEUS role models capture
structural (static) relationships between roles as well as communicative acts that de-
scribe the dynamic aspects of inter-agent communication. The pre-defined role models
that are provided by the ZEUS environment include various protocols from the trading
domain as well as business processes such as supply chain management.

3 UML Activity Diagrams

Activity diagrams in UML models provide a number of structural elements as shown
in in Figure 1 to describe algorithms in a flowchart like manner. To this end, each
computation is expressed in terms ofstatesand the progression through these states. In
order to allow for a hierarchical modeling, the UML distinguishes between two classes
of states.Action statesare atomic entities that cannot be decomposed and that relate to



Transition

Branching

[guard]

Fork...

Lane 1 Lane 2

Swimlanes

Join

...

State

Inital State

Final State

Fig. 1.Structural Elements of UML Activity Diagrams

atomic statements in a programming language, eg. variable assignment.Activity states,
on the other hand, represent a collection of atomic states and can thus be decomposed
into these atomic states. Furthermore, the execution of an activity can be interrupted
between any two subsequent states. In terms of programming languages, actions relate
to statements and activities relate to subroutines.

The states of an activity diagram are linked with each other throughtransitionsthat
indicate the control flow within the activity diagram. Each transition can have aguard
condition that controls the flow of control in that it only allows a transition to fire if
the guard condition is true. Because of the basic requirement that each transition must
have at least one start and one end point, special states are introduced that represent the
beginning and the end of an activity diagram, respectively.

The control flow within an activity diagram is not necessarily linear, otherwise
it would be impossible to express anything other then trivial algorithms. Therefore,
branchingelements that represent the decision points within a diagram are provided.
Each branching points stands for a boolean decision, i.e. the flow of control can pro-
ceed along two different paths.

Many modern programming languages provide some notion for pseudo-parallel
program execution within a single operating system process. These light-weight pro-
cesses – usually referred to as “threads” – can be modeled in UML activity diagrams
by using two structural elements. Afork operation splits a single thread of execution
into two or more threads that are subsequently executed in parallel. Thus, a fork bar
has one incoming transition and several outgoing transitions. In order to merge several
of these parallel threads into a single thread again, UML activity diagrams provide the
join element. Thus, a join barrier has several incoming transitions and only a single
outgoing transition, it can therefore be used to synchronize several parallel threads of
execution. Note that a join barrier waits untilall incoming threads have arrived at the
barrier before proceeding with the single master thread.



Because of the fact that activity diagrams tend to become somewhat confusion with
growing in size, UML activity diagrams can contain so-calledswimlanesthat are used to
partition an activity diagram into several conceptually related parts. Within an activity
diagram, each swimlane must have a unique name and each activity must belong to
exactly one swimlane.

4 Tailoring UML

The UML has built-in extension mechanisms based onconstraints, tagged values, and
stereotypesthat makes it possible to create UML profiles for particular application do-
mains. A UML profile is a collection of modeling elements together with well defined
semantics of these elements and the possible relations between them. For the purpose
of this paper, stereotypes are sufficient; for a general UML profile for agent-based ap-
plications, all three extension mechanisms are likely to be necessary.

Stereotypes are new model elements that are declared within the model itself, i.e.
stereotypes extend the modeling capabilities by introducing new classifiers that may ex-
tend the semantics but not the structure of existing meta-model classes. As an example
for a stereotype, consider a business application where we want to deal with business
processes explicitly. We can then introduce thebusiness process stereotype as a
means to describe a special kind of classes with attributes and methods but with addi-
tional constraints on usage and allowed structural relationships within the design model.
Each stereotype must be based on an existing modeling element, this enables tools to
deal with arbitrary stereotypes in the same way as with the respective base elements. To
visually distinguish stereotypes and standard UML modeling elements, each stereotype
can have its own icon. Furthermore, it is possible to define hierarchies of stereotypes
with inheritance between them and using meta-model class diagrams to visualize the
relationships between stereotypes. To store additional information about an instance of
a stereotype, the creator of a stereotype can define a list of required tags that must be
set whenever a stereotype instance is created. The information kept in the tagged values
can, for example, be used by automatic code generators.

In the following section, I will define a couple of stereotypes that are necessary to
model agent interaction protocols. For other aspects of agent-based systems, additional
stereotypes will be needed.

5 Protocol Specification with Activity Diagrams

In this paper, I propose a notation for interaction protocols that is based on the basic el-
ements of UML activity diagrams. In order to make them more usable to describe agent
interaction protocols, I will introduce several stereotypes that relate the basic elements
to the specific application area. First of all, I will extend the idea of swimlanes as a
means to describe theroles (stereotype<<role>> ) that occur within the application.
In my view, these swimlanes are interpreted as physically – as opposed to conceptu-
ally – separated flows of control. I will sometimes refer to these independent flows of
control ascontrol flow spacesin the rest of this paper. The roles within the diagrams
are linked with each other via explicit communicationchannels(<<channel>> ) that



<<send>> <<receive>>

<<timeout>>

Fig. 2.Synchronization Point

messageRead
Handle Type 1

Handle Type 3

Handle Type 2

Error

messageRead

(a) (b)

[message==

[message==

[message== ]

]

]

[no]

[no]

[no]

Dispatch message

[Type_3][Type_1] [Type_2] Error

Type_1

Type_2

Type_3

Fig. 3.Defining Macros

manage the message exchange between two roles. The message exchange itself is mod-
eled insynchronization points(<<synchronization point>> ) that denote the
sending and the reception of messages, respectively. The graphical representation of a
synchronization point is shown in Figure 2 where the arrows on either side denote the
the control flow of the sender and the control flow of the receiver, respectively.

Each synchronization point has several incoming transitions out of which exactly
one must be a<<send>> operation. The other transitions are the receivers of the re-
spective message. Whenever the control flow of a receiver enters a synchronization
point, the receiver suspends until a message has been delivered. This happens when-
ever the control flow of the sender reaches the synchronization point. After the massage
has been delivered, the control flow of the sender and the control flow of the receivers
resumes after the synchronization point. In order to prevent the receivers from infinite
blocking while waiting for a message that never arrives, an additional<<timeout>>
transition for each receiver can be attached to the synchronization. Whenever the time-
out is reached and no message has been delivered, the control flow of the respective
receiver resumes at the state pointed to by the timeout transition.

Note that the<<synchronization point>> stereotype includes asemantic
extension of the UML because no such thing as a “timeout” is defined for join elements
of standard activity diagrams. As explained in the previous paragraph, however, this
semantic extension (which is still covered by the bounds of the extension mechanisms



<<receive>>

<<role>> <<channel>> <<role>>

<<send>>

Role 2Role 1

Fig. 4.Augmented Activity Diagram

described above) is necessary to prevent either sender or receiver from infinite block-
ing. Note also, that it is not possible to expressasynchronousmessage exchange with
the protocol description mechanisms presented in this paper. For such diagrams, an-
other modeling element would have to be defined either as stereotype or as new UML
elements. Thus, here we might have the case that the UML is not sufficient and would
need some extension. I will return to this later in the conclusion.

A very important feature of UML diagrams is that they provide a powerful structur-
ing mechanism that can be used to make protocol mode readable. Since activity states
can represent complete automata, it is straightforward to use them for macro defini-
tions that can be used in interaction protocols. Figure 3 illustrates the idea. Figure 3 (a)
shows an activity diagram for dispatching an incoming message according to the mes-
sage type. Using the UML rule that a state can have several outgoing transitions that
are labeled with conditional statements, we can rewrite the shaded part of the original
automaton that contains three branching points into a single state as shown in 3 (b)1.
Collapsing several states into a single macro state has not only the advantage to make a
diagram more readable, it is also important that the macro state can be given a speaking
name that highlight its purpose. Although the overall gain seems to be pretty small in
the above example, the gain soon becomes apparent in more complex protocols where
each decision point or loop construction that is hidden improves the readability of the
protocol. Furthermore, this mechanism can be used to embed protocols into others, al-
lowing for a hierarchical structuring, flexible combination and re-use of protocols.

The use of the various modeling elements for specifying agent interaction protocols
is shown in Figure 4. The swimlanes indicate the control flow spaces that are associated

1 Note that conditions on the outgoing transitions are abbreviated in the example.



Price
Send

Check
Answer

Receive
Price

Request
Payment

Check
Price

Send
Proposal

Set new
Price

Payment
Initiate

<<receive>>

<<timeout>>

<<send>>
Request

<<receive>>
Request

[not understood]

[yes]

ok

[not ok]

[no]

[yes]

<<send>>

[Proposal]

Auction
Init

Proposal.price
>= Price [no]

Price >=
Minimum

<<timeout>>

<<receive>> Price

<<send>>
Proposal

<<role>>Auctioneer <<role>>Bidder

Price

Answer

Fig. 5.English Auction

with each role within the agent interaction protocol. The control flow of each of these
roles is modeled using the structural elements that are provided by standard UML ac-
tivity diagrams. The self-contained control flow spaces are linked via a communication
channel that holds one synchronization point that links the activity diagrams of the in-
teracting roles. In the following section, we will see, how the modeling elements and
the new stereotypes can be used to specify real agent interaction protocols.

6 Example

In order to illustrate the use of UML activity diagrams for interaction protocol spec-
ification on a realistic example, recall the English Auction that was mentioned in the
introductory section. In Figure 5, I have depicted an interaction protocol that describes
the course of actions and message exchanges within the auction more formally.

The first step in the interaction design process is to identify the roles that inter-
act with each other. In the example, we have already identified theauctioneerand the



bidder as the participating roles. Now, we create a control flow space that will later
hold the finite automaton that describes the behavior of the agent playing a particular
role. It is usually a good idea to develop an initial version of each automaton without
considering the other automata, i.e. without switching back and forth between different
automata. Thus, for the auctioneer, the auction starts with an initialization of its internal
data, e.g. with determining the initial price of the product. Then, the auctioneer sends
out a proposal to the bidders and waits for the incoming replies. In order to make the
example more realistic, we shall assume that a bidder can indicate that the proposal
was not understood, e.g. because the bidder is not familiar with the ontology used. In
that case, the auctioneer simply ignores the message and continuous to wait for further
messages. If, on the other hand, the price is accepted by the bidder, the auctioneer raises
the price according to a fixed rate and the cycle starts from the beginning. In the offer is
not accepted by the bidder, the auctioneer continuous to wait for incoming replies until
a fixed timeout. When the timeout has expired and no bidder has accepted the offer, the
product is given to the last bidder that has accepted the price (if that price exceeds a
previously defined minimal acceptable price). Please note, that theCheckAnswerstate
uses the macro mechanism explained earlier to dispatch the incoming messages.

Now that the behavior of the auctioneer has been fully specified, we can turn to
the bidder role. In the example, the bidder goes into a waiting loop as soon as the
protocol execution is started. It leaves this loop when it receives an offer proposed by the
auctioneer and checks whether to offered price is acceptable according to its individual
goals. If this is the case, the bidder sends out a positive reply and re-iterates the waiting
process. If the actual price is not acceptable, the bidder waits for a message from the
auctioneer that indicates if the bidder is given the product or nor. Obviously, this can
only happen when the bidder has issued a positive reply during the auction. To avoid an
infinite blocking of the bidder, a timeout is applied to terminate the waiting process after
a finite time. The bidder that receives the positive acknowledgment from the auctioneer
will immediately initiate the payment process to finally receive the product.

This small example should be sufficient to provide the reader with an impression
on how to apply the suggested method to arbitrary agent interaction protocols. The best
way to see how the method works in practice is to pick an (preferably easy) protocol
from the application domain of interest and then to simply start right away with an iter-
ative modeling process. The value of the diagrams will then quickly become apparent.

7 Conclusion

In this paper, I have demonstrated how UML activity diagrams can be used for the
specification of agent interaction protocols. The suggested method uses existing UML
concepts and requires no additional elements, therewith making it easy for UML users
to understand the interaction protocols without having to learn a completely new type
of diagram. The method that was explained in this paper has been used in practical
situations and has shown to be a valuable tool for modeling, understanding and com-
municating agent interaction protocols.

At the beginning of the paper, I have argued that, in my view, a special UML ver-
sion only for agent-based systems is not desirable because of the potential emergence



of mutually incompatible UML dialects. This does not mean, however, that the UML
in its current version is perfect. Certainly there are aspects that need further elabora-
tion and improvements and the requirements in the design of agent-based applications
that provide input on which features should be added or improved are absolutely nec-
essary. Approaches such as AUML can help to identify the potentially problematic or
insufficient parts of the UML. The resulting extensions and improvements of the UML,
however, should be chosen such that they are useful not only for agent-based systems,
and they should be part of the general standard and not just a dialect thereof. In this
sense, we shall continue to identify agent-specific requirements for the UML, try to
solve the upcoming problems within the standard and suggest extensions only in those
cases where solutions within the standard are not possible.

Acknowledgments

I would specifically like to thank Jeremy Pitt for the discussion on the weak points of an
earlier version of this paper. His comments caused me to investigate the UML extension
mechanism in greater depth in order to get them fixed.

References

1. Bernhard Bauer. UML Class Diagrams Revisited in the Context of Agent-Based Systems. In
Proceeedings of the Second International Workshop on Agent-Oriented Software Engineer-
ing (AOSE-2001), Montreal, Canada, 2001.

2. Bernhard Bauer, Jörg P. Müller, and James Odell. Agent UML: A Formalism for Specifying
Multiagent Software Systems. InProceeedings of the First International Workshop on Agent-
Oriented Software Engineering (AOSE-2000) held at the 22nd International Conference on
Software Engineering, Limerick, Ireland, 2001. Springer Verlag.

3. G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User Guide.
Addison Wesley, 1999.

4. B. Burmeister, A. Haddadi, and K. Sundermeyer. Generic configurable cooperation protocols
for multi-agent systems. In C. Castelfranchi and J.-P. Müller, editors,From Reaction to
Cognition — 5th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW’93), volume 957 ofLNAI, pages 157–171. Springer-Verlag, 1995.

5. S. Bussmann and H. J. M̈uller. A Communication Structure for Cooperating Agents.Com-
puters and AI, I, 1993.

6. J. Collins and D. Ndumu. The ZEUS Role Modelling Guide. Technical report, BT, Adastral
Park, Martlesham Heath, 1998.

7. T. Finin and R. Fritzson. KQML — a language and protocol for knowledge and informa-
tion exchange. InProceedings of the 13th International Distributed Artificial Intelligence
Workshop, pages 127–136, Seattle, WA, USA, 1994.

8. FIPA. AgenTalk Reference Manual. NTT Communication Science Laboratories and Ishida
Laboratory, Department of Information Science, Kyoto University., 1996.

9. Gerard J. Holzmann.Design and Validation of Computer Protocols. Prentice Hall, 1991.
10. M. Kolb. A cooperation language. InProceedings of the First International Conference on

Multi-Agent Systems (ICMAS’95), pages 233–238, June 1995.
11. Jean-Luc Koning, Marc-Philippe Huget, Jun Wei, and Xu Wang. Extended Modeling Lan-

guages for Interaction Protocol Design. InProceeedings of the Second International Work-
shop on Agent-Oriented Software Engineering (AOSE-2001), Montreal, Canada, 2001.



12. J̈urgen Lind.Iterative Software Engineering for Multiagent Systems - TheMASSIVE Method,
volume 1994 ofLecture Notes in Computer Science. Springer, May 2001.

13. Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C. Lee, and Jaron C. Collins. ZEUS: A
tool-kit for building distributed multi-agent systems.Applied Artifical Intelligence Journal,
13(1):129–186, 1999.

14. H. V. D. Parunak and James Odell. Representing Social Structures in UML. InProceeed-
ings of the Second International Workshop on Agent-Oriented Software Engineering (AOSE-
2001), Montreal, Canada, 2001.

15. Stefan Philipps and Jürgen Lind. Ein System zur Definition und Ausführung von Protokollen
für Multi-Agentensystemen. Technical Report RR-99-01, DFKI, 1999.

16. Programming Systems Lab. The mozart programming system. University of the Saarland,
1999. http://www.mozart-oz.org.

17. J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Modeling Language Reference Man-
ual. Addision-Wesley, 1999.

18. The International Organization for Standardization. IS-9074 (Information processing sys-
tems/Open systems interconnection): Estelle — a formal description technique based on an
extended state transition model, 1997.

19. J. Wei, S.-C. Cheung, and X. Wang. Towards a Methodology for Formal Design and Analysis
of Agent Interaction Protocols. InProceeedings of the International Software Engineering
Symposium, Wuhan, Hubei, China, 2001.


